

Videon EdgeCaster and NexPlayer
Low Latency HTTP Streaming & Compatibility Test

Report

Project Name Low Latency HTTP Streaming and Compatibility Test

Project Purpose The purpose of this project is to validate and measure the end to
end latency between Videon’s EdgeCaster encoder and NexPlayer’s
player application in conjunction with AWS MediaStore in low
latency, CMAF, and MBR workflows.

Test Highlights
Test Purpose: ​Validate and measure the latency using the NexPlayer player application
on different platforms when video is encoded by Videon’s EdgeCaster and sent to
NexPlayer via AWS. Validation and measurements will be examined in low latency
modes using CMAF along with Videon’s multiple bit rate support.

Test Goal: ​The goal is to clearly identify end to end workflow compatibility along with
measuring the expected latency for different workflows. Quantitative measurements
ensure both companies have a baseline reference for on-going engineering
improvement. The results can also be used to showcase recommended workflows and
expected results to interested parties. In performing the tests, attention will be paid to
device synchronization.

Test Results: ​Videon has established a goal of achieving under 3 seconds end to end
latency as our basis for recommending a low latency, HTTP workflow. Using either a
DASH or HLS low latency workflow with CMAF chunking, an end to end latency of three
seconds or less was measured using Android and iOS playback. Using a DASH low
latency workflow with CMAF chunking, an end to end latency of less than three seconds
was measured using HTML5 playback. Measurement of HLS low latency CMAF
chunking on HTML5 did not produce workflows that enable lower than 3 seconds of
latency at this time, thus HTML5 cannot be recommended for HLS ULL workflows.
Synchronization across devices was only found possible using Android and iOS, thus
HTML cannot be recommended since HTML synchronization was not within 1 second
when enabled. In all instances, DASH/HLS in non-low latency mode is fully supported.

Intended Audience​: This testing document assumes the ability to set up or access an
AWS account as well as have access to the NexPlayer player applications. With this
knowledge, one should be able to use this information to successfully run all tests within
2 hours.

Test Purpose
Videon’s goal in the following testing is to validate and quantify the glass to glass latency
for the workflow involving Videon’s products, AWS as a cloud service provider (in this
case HTTP Origin and CDN), and NexPlayer’s player client. Understanding this workflow
and its associated latency ensures an understanding of the performance between
NexPlayer and Videon. This will position Videon and its partners with the ability to
quickly and easily recommend the verified workflow to customers and partners.

Test Goal
The following testing aims to measure end to end latency with several different
workflows. Initial tests will be done using a single bit rate, non CMAF configuration. A
second base measurement will be done using HLS/DASH with Videon’s multiple bit rate
capability. Low latency modes will be measured using a single bit stream with CMAF
enabled. A second low latency test will be measured using Videon’s multiple bitrate
stream with CMAF enabled. As applicable to the workflow, NexPlayer’s player client will
be tested on iOS and Android platforms along with a HTML5 browser. Both qualitative
and quantitative measurements will be recorded.

Test Details

Product Used Hardware Version Number

Videon EdgeCaster 0.3.1067.61.3 (MBR V0.2)

NexPlayer Sample App
(iOS)

Apple iPad 5th Gen (Model
MP2F2LL/A, Software
Version 13.3.1 (17D50))

5.40.1.5136

NexPlayer APK (Android) Android OnePlus (Model #
A3000, Android Version
6.0.1)
Motorola moto g6 (Model #
XT1925-6, Android Version
9)

NexPlayerSDK_Android_
WV_MediaDRM_ver6.69.2
.815_20200217_HLS_DAS
H_PD_Local_VAST_Nativ
eAudio_APPID_by202005
17.apk

NexPlayer Demo Player
(HTML5)

Dell Latitude (Ubuntu
18.04)
Apple Macintosh
Dell Latitude (Windows 10,
Version 1909)

Release_3.4-531-gd2f1a96
3-dirty-development

AWS MediaStore N/A N/A

Block Diagram

Test Instructions

To configure AWS MediaStore
1. Open the CloudFormation template by clicking here: ​ULL CloudFormation Template
2. Select the region closest to you from the title bar in the upper right corner of the

CloudFormation screen, options are N. Virginia, Oregon, Seoul, Sydney, Tokyo,
Frankfurt, Ireland, and Stockholm

3. From the “Create Stack” screen, select the “Next” button on the bottom right of the
screen

4. From the “Specify stack details”, enter the following fields:
a. Stack Name​ – The default is “ULL”, you can name it something different, but

it cannot be the same name as an existing stack
b. MediaStoreContainerName​ – The default is “MyContainer”, you can name is

something different, but no spaces, just numbers/characters
c. EncoderIP​ – This is the encoder's public IP

i. If you want to allow traffic from anywhere, enter 0.0.0.0
d. EnableCloudFront​ – The default is “False”. Set this to true if you want to

configure a CloudFront distribution to serve your content. This is
recommended, but it adds about 15 minutes to the orchestration time for this
template.

5. Leave all the other fields unmodified, and select the “Next” button at the bottom right
of the screen

6. From the “Configure stack options” screen select the “Next” button at the bottom
right of the screen

7. From the “Review Stackname” screen, check the Capabilities acknowledgment and
select the “Create stack” button at the bottom right of the screen.

8. When the stack is complete, you should see a green “CREATE_COMPUTE” check
box under the Stacks column. When deploying with CloudFront set to true, this
should take 20 minutes. When deploying without CloudFront, it should take less than
3 minutes.

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/create/template?stackName=ULL&templateURL=https:%2F%2Fcustom-live-on-aws-us-west-2.s3-us-west-2.amazonaws.com/live-streaming-on-aws/1.0/custom-live-on-aws.template

To configure EdgeCaster as ​Single Bitrate
1. Open​ Encoder Settings ​in the Videon EdgeCaster web UI and set the

Quality/Latency setting to Lowest​.
2. Navigate to the HTTP Push tab within Output Settings​ of the Videon EdgeCaster

3. Enter the ​ingest URL ​for the desired origin server into the ​HTTP Push URL​ field
4. Configure the following settings

○ 5 segments of length 6 seconds
○ TS for TS tests, fMP4 CMAF tests
○ ULL ON

■ 6-frame chunks
○ DASH SPD ON

■ 2 seconds
5. Turn ​HTTP Push​ ON and click ​OK​ or ​Apply
6. You can now view the stream at ​[HTTP Push URL]/master.m3u8 ​or ​[HTTP Push

URL]/manifest.mpd

To configure EdgeCaster as​ Multiple Bitrate
1. Click ​+ Add MBR Group
2. Click ​Group Settings​ (it appears in place of + Add MBR Group)
3. Set ​Quality/Latency​ = ​Lowest
4. Click ​Save
5. Click ​+ Add Video Profile​ for the number of Video Profiles in the ladder

○ Do not exceed 4Kp30 for combined resolution/framerate
○ For this testing, the following ladder was used

■ 1080p60 @ 5000kbps
■ 720p60 @ 2000kbps
■ 480p60 @ 1000kbps
■ 360p60 @ 750kbps

6. For each ​Video Profile​, click the name in the left sidebar then
○ Click the name in the main configuration menu (should have a ​pencil icon

next to it) and type the new name of the Video Profile
○ Set ​Video Scaling​ to the desired resolution for the profile
○ Configure the rest of the settings according to the desired ladder
○ Make sure to turn ​MBR Group Member​ to ​ON
○ Click ​Save

7. Under ​Audio Profiles ​click ​+ Add Audio Profile
8. Click the new ​Audio Profile name​ that appears
9. Click the name in the main configuration menu (should have a ​pencil icon​ next to it)

and type the new name of the Audio Profile
10. Configure the desired settings
11. Click ​Save
12. In ​HTTP Push​, select the ​MBR Group​ as the ​Video Source
13. Select the previously created ​Audio Profile​ and the ​Audio Source
14. Enter the ​ingest URL ​for the desired origin server into the ​HTTP Push URL​ field
15. Configure the following settings

○ 5 segments of length 6 seconds
○ TS for TS tests fMP4 CMAF tests
○ ULL ON

■ 6-frame chunks
○ DASH SPD ON

■ 2 seconds
16. Turn ​HTTP Push​ ON and click ​OK​ or ​Apply
17. You can now view the stream at ​[HTTP Push URL]/master.m3u8 ​or ​[HTTP Push

URL]/manifest.mpd

To configure NexPlayer on ​Android​:
1. From the main screen, tap the three vertical dots in the top right corner and tap ​settings
2. Configure the following settings

a. Low Latency
i. Enabled = True
ii. Low Latency Buffer Option = Auto Buffer Management

b. SPD Settings
i. Enabled = True
ii. SPD delay time = 3000ms
iii. SPD sync value = 500ms
iv. SPD too much sync diff value = 10000ms

3. Navigate back to the main screen
4. Tap streaming at the top
5. Tap ​GO TO URL
6. In the ​URL​ field, enter the playback URL in the last step of the ​EdgeCaster Configuration
7. Tap ​PLAY​ at the bottom to start the stream

To configure NexPlayer on ​iOS​:
1. From the main screen, tap the ​gear​ in the bottom right corner
2. Scroll through the settings and configure the following

a. Low Latency
i. Enabled = True
ii. Low Latency Buffer Option = Auto Buffer Management

b. SPD
i. Enabled = True
ii. Delay = 3000ms
iii. Sync = 500ms
iv. Too much sync = 10000ms

3. Navigate back to the main screen
4. Tap ​Go to URL
5. In the ​URL​ field, enter the playback URL in the last step of the ​EdgeCaster Configuration
6. Tap ​PLAY​ at the to start the stream

To configure NexPlayer on ​HTML5​:
1. Copy the following code into a file named NexPlayer.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no" />

 <title>NexPlayer</title>
 <style type="text/css">
 #player_container {
 width: 90%;
 margin: auto;
 padding-top: 50.625%; /* 16:9 Aspect Ratio 56.25 * 0.9 */
 position: relative;
 }
 @media (min-width: 75rem) {
 #player_container {
 width: 50%;
 padding-top: 28.125%; /* 16:9 Aspect Ratio 56.25 * 0.5 */
 }
 }
 h1 {
 text-align: center;
 }
 #player {
 background-color: black;
 position: absolute;
 top: 0px;
 width: 100%;
 height: 100%;
 }
 #warning {
 background-color: red;
 text-align: center;
 display: none;
 }
 </style>
</head>

<body>
 <h1>NexPlayer HTML5</h1>
 <div id="warning">
 <h1>Unsupported protocol</h1>
 <h3>Loading HTML using the file protocol can't be supported. Please use a server
(HTTP/HTTPS protocol).</h3>
 </div>
 <div id="player_container">
 <div id="player"></div>
 </div>

 <script src="https://NexPlayer.NexPlayersdk.com/latest/NexPlayer.js"></script>
 <script type="text/javascript">
 NexPlayer.Setup({
 key: "[LICENSE KEY]",
 div: document.getElementById('player'),
 lowLatency: true, // toggle on/off low latency apis
 lowLatencyLiveDelay: 3.0, // The desired latency to maintain
 src: '[HLS/DASH VIEWING URL]',

 });

 </script>
</body>
</html>

2. After ​key​, replace ​[LICENSE KEY]​ with the HTML5 license associated with your
NexPlayer account

3. After ​src​, replace ​[HLS/DASH VIEWING URL]​ with the URL in the last step of the
EdgeCaster Configuration

4. Save the file
5. Load the NexPlayer.html file using a web browser (if not the default when double-clicked,

it is usually an option when right-clicked)

Test Results and Observations

All test results below were observed as equivalent for both Single Bitrate and Multiple Bitrate
tests.

iOS and HTML5 do not yet support automatic switching of bitrates mid-stream (ABR), so manual
switching was used in those tests.

Quantitative test results

Test Description
DASH /

HLS Platform Measurements / Comments

ULL
Measures how low latency can be
configured throughout the
workflow.

DASH

Android 2.3 seconds

iOS 2.8 seconds

HTML5 2.7 seconds

HLS

Android 2.5 seconds

iOS 3 seconds

HTML5 >5 seconds

Sync
Measures how closely two devices
can be synchronized when playing
back on DASH/HLS

DASH

Android Within 1 second

iOS Within 1 second

HTML5 N/A​ - See Qualitative results

HLS

Android Within 1 second

iOS Within 1 second

HTML5 N/A​ - See Qualitative results

Qualitative test results

Test Description
DASH /

HLS Pass / Fail Measurements / Comments

1 Sync

Measures how closely two devices
can be synchronized when playing
back on DASH/HLS

Synchronization within 1 second is
considered a pass

DASH

Android Pass

iOS Pass

HTML5 N/A No option for Sync settings

HLS

Android Pass

iOS Pass

HTML5 N/A No option for Sync settings

2 TS

Verifies if TS playback is
supported.

Successful playback of TS is
considered a pass

DASH

Android N/A
Expected result, support not required (not
standard) iOS N/A

HTML5 N/A

DASH

Android Pass

 iOS Pass

HTML5 Pass

3 CMAF

Verifies if CMAF playback is
supported

Successful playback of CMAF is
considered a pass

DASH

Android Pass

 iOS Pass

HTML5 Pass

HLS

Android Pass

 iOS Pass

HTML5 Pass

4 ULL

Measures how low latency can be
configured throughout the
workflow.

Stable latency of lower than 3
seconds is considered a pass

DASH

Android Pass

iOS Pass

HTML5 Fail

Observed latency of 2.7 seconds, but failure due to
unstable playback. Playback would pause/buffer
after a few seconds and does not recover

Unable to observe Low Latency even when
LiveDelay value increased to 10 seconds

HLS

Android Pass

iOS Pass

HTML5 Fail ULL did not appear to work when Low Latency
enabled

5 H.264 Verifies if H.264 is supported on
playback DASH

Android Pass
 iOS Pass

Successful playback of H.264 is
considered a pass

HTML5 Pass

HLS

Android Pass

 iOS Pass

HTML5 Pass

6 H.265

Verifies if H.265 is supported on
playback

Successful playback of H.265 is
considered a pass

DASH

Android Pass

iOS Pass

HTML5 N/A

N/A since H.265 is dependent on the hardware
supporting it. This is likely not anything NexPlayer
can easily resolve due to it being more of a
hardware issue than a player client software issue.

HLS

Android Pass

iOS Pass

HTML5 N/A

N/A since H.265 is dependent on the hardware
supporting it. This is likely not anything NexPlayer
can easily resolve due to it being more of a
hardware issue than a player client software issue.

13 Chrome Successful non-ULL playback is
considered a pass

Windows Pass

 MacOS Pass

Linux Pass

14 Safari Successful non-ULL playback is
considered a pass

Windows N/A

 MacOS Pass

Linux Pass

15 Firefox Successful non-ULL playback is
considered a pass

Windows Pass

 MacOS Pass

Linux Pass

16 Opera Successful non-ULL playback is
considered a pass

Windows Pass

 MacOS Pass

Linux Pass

17 Edge Successful non-ULL playback is
considered a pass

Windows Pass

 MacOS N/A

Linux N/A

Conclusion/Recommendations
Videon concludes the following:

● NexPlayer produces positive results in Android- and iOS-based workflows that utilize
ULL, cross-device synchronization, or both

○ Latency was under 3 seconds
○ Cross-device synchronization was within 1 second

● NexPlayer on HTML5 does not appear to fully support ULL, cross-device
synchronization, or both

○ Latency was not under 3 seconds
○ Cross-device synchronization was not within 1 second

● In general, video quality appears acceptable (i.e. no issues identified on the player end),
even when in ULL conditions (less than 3 seconds).

● Regarding the recommendation of this workflow, with the current state of test results,
Videon can only recommend this workflow for the following (for both Single Bitrate and
Multiple Bitrate workflows):

○ Non-ULL HLS/DASH on all platforms
○ ULL HLS/DASH workflows on Android and iOS, which can include cross

-device synchronization
○ ULL DASH workflows on HTML which do not include cross-device

synchronization

Videon recommends the following actions to improve performance or support new features:

● Videon and NexPlayer to investigate the reasons for failure on HTML5-based workflows.
Action items for each/either party should be generated as a result of the below
investigations.

○ Optimize HTML5 HLS ULL to under 3 seconds of latency
○ Optimize HTML5 synchronization to within one second across devices
○ Ensure HTML5 ULL and synchronization work simultaneously

